0. Definitions

 $x \in A$ is true if and only if x is an element of the set A. $x \notin A$ is true if and only if x is not an element of the set A. $B \subseteq A$ is true if and only if every element of the set B is an element of the set A.¹

$\varnothing =_{\mathsf{def}} \{\,\}$

 $\begin{array}{l} A \cap B =_{def} \{ x \mid x \in A \text{ and } x \in B \} \\ A \cup B =_{def} \{ x \mid x \in A \text{ or } x \in B \} \\ A - B =_{def} \{ x \mid x \in A \text{ and } x \notin B \} \\ C(A) =_{def} \{ x \mid x \notin A \}, \text{ we assume that we only consider things in our "discourse universe", U.} \end{array}$

 $\mathscr{O}\left(\mathsf{A}\right)=_{\mathsf{def}}\{\,\mathsf{B}\mid\mathsf{B}\subseteq\mathsf{A}\,\}$

1. Different ways of specifying sets

Give a different notation that picks out the same set.

- (a) { 2, 4, 6, 8 }
- (b) { $x \mid x^2 = 9$ }
- (c) { Ginger, Greg, Gillian }

For the following exercises, use these sets:

A = { Q, Patrick, Elisabeth, Jack }	D = { Q, 2, 4, Jack, {Elisabeth} }
B = { 2, 4, 6, 8 }	$E = \emptyset$
C = { {Patrick}, 2, {the Berlin Wall, the Hampshire Mall} }	F = { Patrick }

2. Members and subsets

Are the following statements true, false, or ill-formed?

(a)	Patrick \in F	(g)	F⊆C
(b)	Patrick \in C	(h)	$F \subseteq A$
(c)	$\{Patrick\} \in F$	(i)	the Berlin Wall \subseteq C
(d)	${Patrick} \in C$	(j)	${\text{the Berlin Wall}} \subseteq C$
(e)	$D \subseteq A$	(k)	the Berlin Wall \in C
(f)	$B \subseteq D$	(I)	${\text{the Berlin Wall}} \in C$

3. Union and intersection

Specify the following sets. (Probably listing the members will be easiest, but other ways are of course welcome too.)

(a)	$A \cap C$	(e)	$F \cup C$
(b)	$B\capC$	(f)	$F \cap A$
(c)	$B \cap E$	(g)	$D\capB$
(d)	$F \cup A$	(h)	$D \cup B$

4. The empty set

Are the following statements true, false, or ill-formed?

(a)	$E \subseteq C$	(b) E ∈ C

5. Difference

Specify the following sets.

	()	
A – F	(C)	D – B
F – A	(d)	B – D
	A – F F – A	A – F (c) F – A (d)

6. Complement

Assume the set of all people in this class is U, your "discourse universe". What's the following set?

(a) C({ x | x's name has more than two letters })

7. Power Set

Specify the following sets.

- (a) \wp ({ Ginger, Greg, Gillian })
- (b) \wp ({ x | x is a natural number greater than 3 and smaller than 6 })

8. Complement vs. difference

Sometimes the difference operation '-' is called the 'relative complement'. Can you explain this? Try to incorporate the requirement that we talk about members of U into the definition of complement and compare it to the definition of difference.

¹ This relation is sometimes called 'subset or equal' in order to distinguish it from 'proper subset', written \subset . B \subset A is true if and only if every element of B is an element of A and there is at least one element of A that is not an element of B. That is for every set A, A \subseteq A is true, but A \subset A is false.