
Linguistics 201 – Introduction to Linguistic Theory November 8, 2007
Fall 2007 – Section D

Tree Structures

Tree structures have 2 main ingredients: nodes and a “parent-of” relation between the nodes.
Except for the root node, every node has exactly one parent node. Nodes that have no children
are called terminal nodes, or leaves, ones that do are called non-terminal nodes.

Parts of a tree that form itself a tree-structure are called sub-trees.

Trees in which every node has at most n children are called n-ary branching – a tree in which
every node has at most two children is called binary branching, one with at most three ternary,
etc.

For this class, we’ll sometimes label the nodes, that is, we will give them names. We will also fix
the order between the terminal nodes.

 A A simple example:

qp
 B C root note: A
 9 9 terminal nodes: d, e, k, l, g, m, n, o
 d e F g H J non-terminal nodes: A, B, C, F, H, J
 2 | 1
 k l m n o A is parent-of B and C, B is parent-of d,

e, and F, F is parent of k and l, etc.

We generalized the parent-of relation, called dominance:

immediate dominance:
A node X immediately dominates a node Y if and only if X is the parent of Y.

dominance:
A node X dominates a node Y if and only if either
 (a) X immediately dominates Y or
 (b) there is a node Z such that X dominates Z and Z dominates Y.

Two side notes about the dominance relation:

1) The dominance relation is an example of a transitive relation. A relation R is transitive if,
whenever x stands in R to y, and y stands in R to z, then x also stands in R to z.

2) The definition of the dominance relation is recursive. A recursive definition is one that makes
reference to itself. You see that the definition of dominance here make reference to itself in
clause (b).

Since we fixed the order of the terminal nodes, we can also talk about another relation, called
precedence:

precedence:
A node X precedes a node Y if and only if X and all of the nodes X dominates appear to the left
of Y and all of the nodes Y dominates.

immediate precedence:
A node X immediately precedes Y if there is no node that is preceded by X and that precedes
Y.

Some examples from the tree above

- C immediately dominates J.
- B dominates k.
- k precedes g.
- B immediately precedes C.

- A dominates every other node in the tree.

- Two nodes are either in a dominance relation or in a precedence relation, but never both.

Trees and bracket representations

Another way of representing tree structures is by a bracket notation. The tree above would
look like this:

[A [B d e [F k l]] [C g [H m] [J n o]]]

Here are two short recipes to convert back and forth between trees and brackets:

From trees to brackets.

Start at the root node and trace the outline of the tree counter-clockwise.

- If you encounter the left-hand side of a non-terminal node, draw an opening bracket
labeled with the name of the node.

- If you encounter the right-hand side of e non-terminal node, draw a closing bracket.
- If you encounter a terminal node, write its name.

Quick checks:
- The number of opening brackets should match the number of closing brackets.
- If you feel unsure, you can label the closing brackets with the node name as well: each opening
bracket should correspond to exactly one closing bracket, and what’s between the brackets
should correspond to the sub-tree starting with the node named like your bracket label.

From brackets to trees.

Go through the brackets from left to right.

- For an opening bracket, draw a new node as a child of your current “working node”
with the same label as on the bracket. Let this node be your new working node.
(“Draw a new node and go there”)

- For a closing bracket, leave your current working node, and let its parent node be your
new working node.
(“Go one up”)

- For any “non-bracket string” draw a new terminal node as a child of your current
working node.
(“Draw a terminal node, but stay where you are.”)

